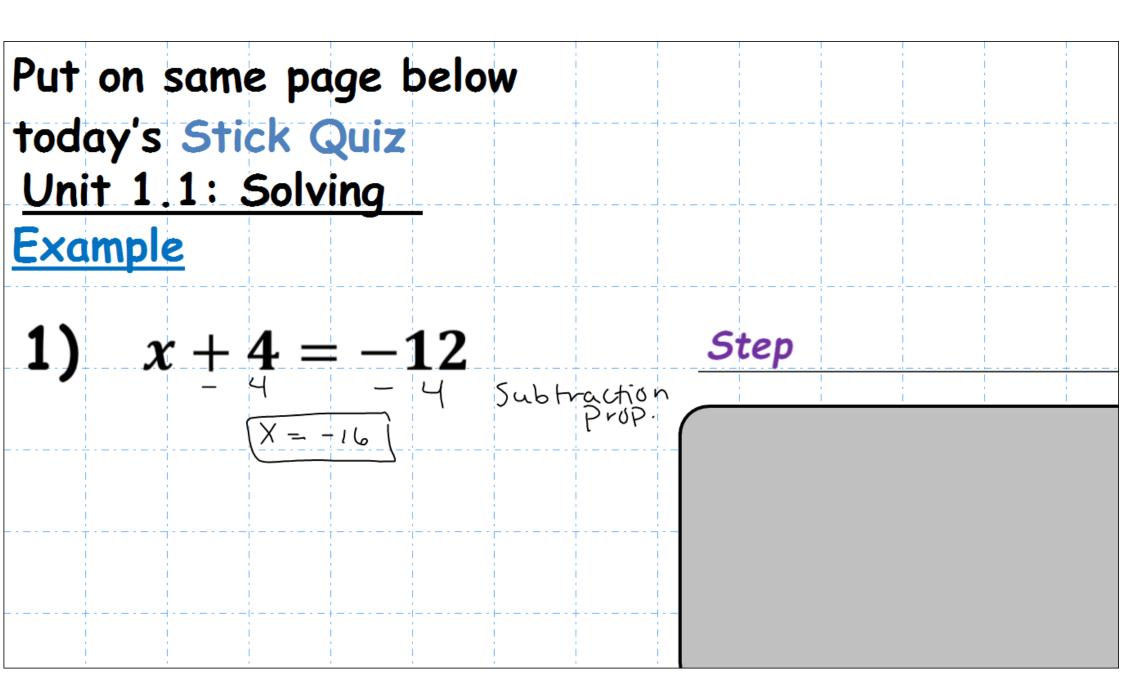

Welcome to Class!!

You will need:

- ~ Pencil
- ~ Highlighter
 - ~ Ruler
 - ~ Binder
- ~ Vocabulary Sheet

Homework: Handout 1.1 Solving Equations


Unit 1.1: Solving Equations

Vocabulary:

Unit 1 Supple	ement on Linear Equations:	
Word	Definition	
Equation	A math sentence stating that two math expressions are equal. $3 \times = 6$	
Solution of the equation	A value we can put in place of a variable (such as x) that makes the equation true. $x=2$	
Inverse operation	The operation that reverses the effect of another operation. $\frac{3 \times 7}{3} = \frac{6}{3}$	
Identity	An equation that is true no matter what values are chosen. $\begin{array}{c} x=x\\ 5=5 \end{array}$	
Literal Equation	An equation that uses at least two different letters as variables.	

Property	Symbols	Examples			
Reflexive	a = a	5=5 or 4x=4 X			
Symmetric	If $a = b$, then $b = a$	1+x=2 then 2=X			
Transitive	If $a = b$ and $b = c$, then $a = c$	14 x = 3 and 3 = y then $x = y$			
Substitution	If $a = b$, then then you can replace a with b and vice versa.	$16 \times = 4 \propto then$ $3 \times = 3(4)$			
Addition & Subtraction	If $a = b$, then $a + c = b + c$ and $a - c = b - c$	·			
Multiplication	$\eta_{\text{If }a=b, ext{then }a\cdot c=b\cdot c}$				
Division	$c \neq 0$. If $a = b$, then $a \cdot c = b \cdot c$ and $\frac{a}{c} = \frac{b}{c}$.	if x=12 then = 12			

Put into notes after

Step			Property	that	says	we	co
2)	$\frac{5}{8}x = (20)$	(-8)					
,	$\frac{5}{5} \times = -160$	Multiplic	ation Prop.				
	$\left(X = -32\right)$	Divisionp	ro P				
- \$ - 5 ×	()=(20) (-8)					- - - - - - - -	
	= -160	 	 			+	
	X=-32						

Exa	mple	2 -	Solv	e M	ulti:		 		 - - 				
	Ste	þ						Prope	rty	that	says	we	can
3)	5(:	x +	3) +	- 2(1 –	<i>x</i>)	= 1	4					
	<u>5×</u>	+ 15	+2	<u>-}</u> ×	- ('	+				 			
			17 = 1 17		 								-
			$\frac{3x}{3}$	<u> </u>									
			\\\ -						-				-

Example - Solve Multi-

4)
$$3(2x-1)-2(3x+4)=11$$

$$6x-3-6x-8=11$$

(No solution

Unit 1.1: Solving Equations

Vocabulary:

	plement on Linear Equations:					
Word	Definition					
Equation	A math sentence stating that two math expressions are equal.					
Solution of the equation						
Inverse operation	The operation that reverses the effect of another operation.					
Identity						
Literal Equation						

Example - Special Cases:

5)
$$3x + 4 = 6x + 5 - 3x$$

$$3 \times + 4 = 3 \times + 5$$

-3×

No Solution

Example - Special Cases: 6x + 5 - 2x = 4 + 4x + 14x+5=4x+5 -4x+5=4x+5 S=5 [Infinite solutions]

Unit 1.1: Solving Equations

Vocabulary:

Unit 1 Supplement on Linear Equations:					
Word	Definition				
Equation	A math sentence stating that two math expressions are equal.				
Solution of the equation	A value we can put in place of a variable (such as x) that makes the equation true.				
Inverse operation	The operation that reverses the effect of another operation.				
Identity	An equation that is true no matter what values are chosen.				

Example - Solve for a

Converting Celsius to Fahrenheit: $C = \frac{5}{9}(F - 32)$.

Solve for
$$F$$
.

$$F = \frac{9}{5}C + 32$$

Example - Solve for a

Area of a trapezoid is $A = \frac{1}{2}h(b_1 + b_2)$. Solve for b_2 .

Now what?

Work on:

Handout 1.1 Solving Equations

Must be completed by:

Monday 8/27

If you finish early:

Create and solve your own literal equations

I can:

1)Solve an equation with one variable

2)Solve literal equations